Search results for "Random matrices"

showing 6 items of 6 documents

On the empirical spectral distribution for certain models related to sample covariance matrices with different correlations

2021

Given [Formula: see text], we study two classes of large random matrices of the form [Formula: see text] where for every [Formula: see text], [Formula: see text] are iid copies of a random variable [Formula: see text], [Formula: see text], [Formula: see text] are two (not necessarily independent) sets of independent random vectors having different covariance matrices and generating well concentrated bilinear forms. We consider two main asymptotic regimes as [Formula: see text]: a standard one, where [Formula: see text], and a slightly modified one, where [Formula: see text] and [Formula: see text] while [Formula: see text] for some [Formula: see text]. Assuming that vectors [Formula: see t…

Statistics and ProbabilityPhysicsAlgebra and Number TheorySpectral power distributionComputer Science::Information RetrievalProbability (math.PR)Astrophysics::Instrumentation and Methods for AstrophysicsBlock (permutation group theory)Marchenko–Pastur lawComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Bilinear form60F05 60B20 47N30Sample mean and sample covarianceCombinatoricsConvergence of random variablesFOS: Mathematicssample covariance matricesComputer Science::General LiteratureDiscrete Mathematics and CombinatoricsRandom matriceshigh dimensional statisticsStatistics Probability and UncertaintyRandom matrixRandom variableMathematics - ProbabilityRandom Matrices: Theory and Applications
researchProduct

Circular law for sparse random regular digraphs

2020

Fix a constant $C\geq 1$ and let $d=d(n)$ satisfy $d\leq \ln^{C} n$ for every large integer $n$. Denote by $A_n$ the adjacency matrix of a uniform random directed $d$-regular graph on $n$ vertices. We show that, as long as $d\to\infty$ with $n$, the empirical spectral distribution of appropriately rescaled matrix $A_n$ converges weakly in probability to the circular law. This result, together with an earlier work of Cook, completely settles the problem of weak convergence of the empirical distribution in directed $d$-regular setting with the degree tending to infinity. As a crucial element of our proof, we develop a technique of bounding intermediate singular values of $A_n$ based on studyi…

General Mathematicsregular graphsrandom matrices01 natural sciencesCombinatoricsMatrix (mathematics)FOS: Mathematics60B20 15B52 46B06 05C80Adjacency matrix0101 mathematicsrandom graphsMathematicsRandom graphlogarithmic potentialWeak convergenceDegree (graph theory)sparse matricesApplied MathematicsProbability (math.PR)010102 general mathematicsCircular lawSingular valueCircular lawintermediate singular valuesRandom matrixMathematics - ProbabilityJournal of the European Mathematical Society
researchProduct

Adjacency matrices of random digraphs: singularity and anti-concentration

2017

Let ${\mathcal D}_{n,d}$ be the set of all $d$-regular directed graphs on $n$ vertices. Let $G$ be a graph chosen uniformly at random from ${\mathcal D}_{n,d}$ and $M$ be its adjacency matrix. We show that $M$ is invertible with probability at least $1-C\ln^{3} d/\sqrt{d}$ for $C\leq d\leq cn/\ln^2 n$, where $c, C$ are positive absolute constants. To this end, we establish a few properties of $d$-regular directed graphs. One of them, a Littlewood-Offord type anti-concentration property, is of independent interest. Let $J$ be a subset of vertices of $G$ with $|J|\approx n/d$. Let $\delta_i$ be the indicator of the event that the vertex $i$ is connected to $J$ and define $\delta = (\delta_1, …

0102 computer and information sciences01 natural scienceslittlewood–offord theory60C05 60B20 05C80 15B52 46B06law.inventionCombinatoricsSingularityanti-concentrationlawFOS: MathematicsMathematics - CombinatoricsAdjacency matrix0101 mathematicsMathematicsinvertibility of random matricesApplied Mathematics010102 general mathematicsProbability (math.PR)random regular graphsDirected graphsingular probabilityGraphVertex (geometry)Invertible matrix010201 computation theory & mathematicsadjacency matricesCombinatorics (math.CO)Mathematics - ProbabilityAnalysis
researchProduct

The smallest singular value of a shifted $d$-regular random square matrix

2017

We derive a lower bound on the smallest singular value of a random d-regular matrix, that is, the adjacency matrix of a random d-regular directed graph. Specifically, let $$C_1<d< c n/\log ^2 n$$ and let $$\mathcal {M}_{n,d}$$ be the set of all $$n\times n$$ square matrices with 0 / 1 entries, such that each row and each column of every matrix in $$\mathcal {M}_{n,d}$$ has exactly d ones. Let M be a random matrix uniformly distributed on $$\mathcal {M}_{n,d}$$ . Then the smallest singular value $$s_{n} (M)$$ of M is greater than $$n^{-6}$$ with probability at least $$1-C_2\log ^2 d/\sqrt{d}$$ , where c, $$C_1$$ , and $$C_2$$ are absolute positive constants independent of any other parameter…

Statistics and ProbabilityIdentity matrixAdjacency matrices01 natural sciencesSquare matrixCombinatorics010104 statistics & probabilityMatrix (mathematics)Mathematics::Algebraic GeometryFOS: MathematicsMathematics - Combinatorics60B20 15B52 46B06 05C80Adjacency matrix0101 mathematicsCondition numberCondition numberMathematicsRandom graphsRandom graphLittlewood–Offord theorySingularity010102 general mathematicsProbability (math.PR)InvertibilityRegular graphsSingular valueSmallest singular valueAnti-concentrationSingular probabilitySparse matricesCombinatorics (math.CO)Statistics Probability and UncertaintyRandom matricesRandom matrixMathematics - ProbabilityAnalysis
researchProduct

Central Limit Theorem for Linear Eigenvalue Statistics for a Tensor Product Version of Sample Covariance Matrices

2017

For $$k,m,n\in {\mathbb {N}}$$ , we consider $$n^k\times n^k$$ random matrices of the form $$\begin{aligned} {\mathcal {M}}_{n,m,k}({\mathbf {y}})=\sum _{\alpha =1}^m\tau _\alpha {Y_\alpha }Y_\alpha ^T,\quad {Y}_\alpha ={\mathbf {y}}_\alpha ^{(1)}\otimes \cdots \otimes {\mathbf {y}}_\alpha ^{(k)}, \end{aligned}$$ where $$\tau _{\alpha }$$ , $$\alpha \in [m]$$ , are real numbers and $${\mathbf {y}}_\alpha ^{(j)}$$ , $$\alpha \in [m]$$ , $$j\in [k]$$ , are i.i.d. copies of a normalized isotropic random vector $${\mathbf {y}}\in {\mathbb {R}}^n$$ . For every fixed $$k\ge 1$$ , if the Normalized Counting Measures of $$\{\tau _{\alpha }\}_{\alpha }$$ converge weakly as $$m,n\rightarrow \infty $$…

Statistics and ProbabilityMathematics(all)Multivariate random variableGeneral Mathematics010102 general mathematicslinear eigenvalue statisticsrandom matrices01 natural sciencesSample mean and sample covariance010104 statistics & probabilityDistribution (mathematics)Tensor productStatisticssample covariance matricescentral Limit Theorem0101 mathematicsStatistics Probability and UncertaintyRandom matrixEigenvalues and eigenvectorsMathematicsReal numberCentral limit theoremJournal of Theoretical Probability
researchProduct

The rank of random regular digraphs of constant degree

2018

Abstract Let d be a (large) integer. Given n ≥ 2 d , let A n be the adjacency matrix of a random directed d -regular graph on n vertices, with the uniform distribution. We show that the rank of A n is at least n − 1 with probability going to one as n grows to infinity. The proof combines the well known method of simple switchings and a recent result of the authors on delocalization of eigenvectors of A n .

Statistics and ProbabilityControl and OptimizationUniform distribution (continuous)General Mathematics0102 computer and information sciencesrandom matrices01 natural sciencesCombinatoricsIntegerFOS: Mathematics60B20 15B52 46B06 05C80Rank (graph theory)Adjacency matrix0101 mathematicsEigenvalues and eigenvectorsMathematicsNumerical AnalysisAlgebra and Number TheoryDegree (graph theory)Applied MathematicsProbability (math.PR)010102 general mathematicsrandom regular graphssingularity probabilityrank010201 computation theory & mathematicsRegular graphRandom matrixMathematics - ProbabilityJournal of Complexity
researchProduct