Search results for "Random matrices"
showing 6 items of 6 documents
On the empirical spectral distribution for certain models related to sample covariance matrices with different correlations
2021
Given [Formula: see text], we study two classes of large random matrices of the form [Formula: see text] where for every [Formula: see text], [Formula: see text] are iid copies of a random variable [Formula: see text], [Formula: see text], [Formula: see text] are two (not necessarily independent) sets of independent random vectors having different covariance matrices and generating well concentrated bilinear forms. We consider two main asymptotic regimes as [Formula: see text]: a standard one, where [Formula: see text], and a slightly modified one, where [Formula: see text] and [Formula: see text] while [Formula: see text] for some [Formula: see text]. Assuming that vectors [Formula: see t…
Circular law for sparse random regular digraphs
2020
Fix a constant $C\geq 1$ and let $d=d(n)$ satisfy $d\leq \ln^{C} n$ for every large integer $n$. Denote by $A_n$ the adjacency matrix of a uniform random directed $d$-regular graph on $n$ vertices. We show that, as long as $d\to\infty$ with $n$, the empirical spectral distribution of appropriately rescaled matrix $A_n$ converges weakly in probability to the circular law. This result, together with an earlier work of Cook, completely settles the problem of weak convergence of the empirical distribution in directed $d$-regular setting with the degree tending to infinity. As a crucial element of our proof, we develop a technique of bounding intermediate singular values of $A_n$ based on studyi…
Adjacency matrices of random digraphs: singularity and anti-concentration
2017
Let ${\mathcal D}_{n,d}$ be the set of all $d$-regular directed graphs on $n$ vertices. Let $G$ be a graph chosen uniformly at random from ${\mathcal D}_{n,d}$ and $M$ be its adjacency matrix. We show that $M$ is invertible with probability at least $1-C\ln^{3} d/\sqrt{d}$ for $C\leq d\leq cn/\ln^2 n$, where $c, C$ are positive absolute constants. To this end, we establish a few properties of $d$-regular directed graphs. One of them, a Littlewood-Offord type anti-concentration property, is of independent interest. Let $J$ be a subset of vertices of $G$ with $|J|\approx n/d$. Let $\delta_i$ be the indicator of the event that the vertex $i$ is connected to $J$ and define $\delta = (\delta_1, …
The smallest singular value of a shifted $d$-regular random square matrix
2017
We derive a lower bound on the smallest singular value of a random d-regular matrix, that is, the adjacency matrix of a random d-regular directed graph. Specifically, let $$C_1<d< c n/\log ^2 n$$ and let $$\mathcal {M}_{n,d}$$ be the set of all $$n\times n$$ square matrices with 0 / 1 entries, such that each row and each column of every matrix in $$\mathcal {M}_{n,d}$$ has exactly d ones. Let M be a random matrix uniformly distributed on $$\mathcal {M}_{n,d}$$ . Then the smallest singular value $$s_{n} (M)$$ of M is greater than $$n^{-6}$$ with probability at least $$1-C_2\log ^2 d/\sqrt{d}$$ , where c, $$C_1$$ , and $$C_2$$ are absolute positive constants independent of any other parameter…
Central Limit Theorem for Linear Eigenvalue Statistics for a Tensor Product Version of Sample Covariance Matrices
2017
For $$k,m,n\in {\mathbb {N}}$$ , we consider $$n^k\times n^k$$ random matrices of the form $$\begin{aligned} {\mathcal {M}}_{n,m,k}({\mathbf {y}})=\sum _{\alpha =1}^m\tau _\alpha {Y_\alpha }Y_\alpha ^T,\quad {Y}_\alpha ={\mathbf {y}}_\alpha ^{(1)}\otimes \cdots \otimes {\mathbf {y}}_\alpha ^{(k)}, \end{aligned}$$ where $$\tau _{\alpha }$$ , $$\alpha \in [m]$$ , are real numbers and $${\mathbf {y}}_\alpha ^{(j)}$$ , $$\alpha \in [m]$$ , $$j\in [k]$$ , are i.i.d. copies of a normalized isotropic random vector $${\mathbf {y}}\in {\mathbb {R}}^n$$ . For every fixed $$k\ge 1$$ , if the Normalized Counting Measures of $$\{\tau _{\alpha }\}_{\alpha }$$ converge weakly as $$m,n\rightarrow \infty $$…
The rank of random regular digraphs of constant degree
2018
Abstract Let d be a (large) integer. Given n ≥ 2 d , let A n be the adjacency matrix of a random directed d -regular graph on n vertices, with the uniform distribution. We show that the rank of A n is at least n − 1 with probability going to one as n grows to infinity. The proof combines the well known method of simple switchings and a recent result of the authors on delocalization of eigenvectors of A n .